BaBar and Other **B**eautiful Things

Natalia Kuznetsova Fermi National Accelerator Laboratory

Outline

- Why is heavy-quark physics interesting?
- The BaBar experiment: a quintessential modern B factory
- Measurements and what they tell us:
 - The simplest processes: semileptonic and leptonic decays and the magnitudes of CKM elements
 - Rare B decays, penguins, and searches for direct CP violation
 - Mixing in the neutral B meson system
 - Time-dependent CP asymmetries from the interference between mixing and decay
- Conclusions and prospects

Why Is Heavy Quark Physics Interesting?

1. What is the origin of CP violation?

- SM predicts very large CP asymmetries in the B meson system arising from the interference between $B^0 \overline{B}{}^0$ mixing and decay
- The currently operating B factories are performing a comprehensive set of measurements to determine whether CP asymmetries in the B system are consistent with SM predictions

Why Is Heavy Quark Physics Interesting? (2)

- Measure the rates for relatively simple processes to extract the magnitudes of the CKM matrix elements.
 - In the SM, semileptonic decays are simple tree diagrams with no interference effects.
 - $|V_{cb}|$ and $|V_{ub}|$ are determined from semileptonic decays, while $|V_{td}|$ and $|V_{ts}|$ can be determined from B^0 - $\overline{B^0}$ and B_s - $\overline{B_s}$ mixing and b—>t—>s(d) penguins
 - Measurement of the magnitude of a CKM element requires significant theoretical input based on an understanding of the decay dynamics

$$B(M_{Q\overline{q}} \to X_{q'\overline{q}}l\mathbf{n}) = \mathbf{g}_{\text{theory}} |V_{q'Q}|^2 \mathbf{t}_{M}$$

$$W^{-} \qquad \ell^{-}$$

Why Is Heavy Quark Physics Interesting? (3)

- 3. Search for the effects of **new physics** in a variety of sensitive rare processes with loops.
 - Electroweak- and hadronic-penguin decays; D^0 - D^0 mixing, etc.

- Understand the complicated interplay between the underlying weak processes and strong interaction effects
 - Measure and understand meson decay constants, semileptonic decay form factors, patterns of hadronic decays
 - Impressive theoretical developments: heavy-quark effective theory (HQET), lattice
 QCD calculations, etc.

All of these goals are closely related!

Weak Phases and CP Violation

What conditions do we need to produce *CP* asymmetry?

CP Violating Phase (ϕ_2) without CP Asymmetry

$$a = a_1 + a_2 = |a_1| + |a_2| e^{if_2}$$

$$\overline{a} = |a_1| + |a_2| e^{-if_2}$$

$$|a| = |\overline{a}|$$

CP Violating Phase with CP Asymmetry

$$a = a_{1} + a_{2} = |a_{1}| + |a_{2}| e^{i(\mathbf{f}_{2} + \mathbf{d}_{2})}$$

$$\overline{a} = |a_{1}| + |a_{2}| e^{i(-\mathbf{f}_{2} + \mathbf{d}_{2})}$$

$$|a| \neq |\overline{a}|$$

 \rightarrow Need processes in which the *CP* conserving phase δ_2 is well understood!

The CKM Matrix and Unitarity Triangle

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4).$$

- Unitarity + remove unphysical quark phases => 4 independent parameters in SM with 3 generations
- Wolfenstein: A, λ, η, ρ
- 6 unitarity triangles: all have same area ~ $J_{CP} = A^2 \eta \lambda^6$, but the *CP* asymmetries aren't the same!
- Column 1 x (Column 3)* gives standard triangle; all sides O(λ³)

Constraints on the Unitarity Triangle

1)
$$\left| \frac{V_{ub}^*}{V_{cd} V_{cb}} \right| = \sqrt{\boldsymbol{r}^2 + \boldsymbol{h}^2}$$

Get V_{ub} from $B \rightarrow X_u h$

2) From B^0 mixing:

$$|V_{td}|^2 = A^2 \mathbf{I}^2 [(1 - \mathbf{r}^2) + \mathbf{h}^2]$$

$$A = \left| \frac{V_{cb}}{V_{us}} \right|^2$$

- 3) ε from *CP* violation in \mathbf{K} system (the term from intermediate $t\overline{t}$ states)
- 4). $B_{\rm s}$ mixing is useful because it allows to reduce the uncertainties on $|V_{\rm td}|$

Producing B Mesons Using $e^+e^- \rightarrow Y(4S)$

- The Y(4S) is just above threshold for producing BB pairs, so there is no accompanying particles
- $\sigma(e^+e^- -> Y(4S)) \sim 1.05 \text{ nb}$
- $\sigma(e^+e^- -> q\bar{q}) \sim 3 \text{ nb } (q = u,d,s)$

- $B\overline{B}$ production is a substantial fraction of the total hadronic cross section. Hadron machines have a much higher $b\overline{b}$ cross section (~ 50 μ b), but this is a tiny fraction (~ 10⁻³) of the total hadronic rate
- p_B ~ 325 MeV in Y(4S) rest frame
- BB events have spherical topology (unlike $Z > b\overline{b}$), while continuum events are jet-like

7/1/02

$B^0\overline{B^0}$ Production at Asymmetric-Energy Colliders

• The purpose of having asymmetric beam energies is to boost the *B*⁰*B*⁰ system relative to the lab frame.

$$\Delta t = \mathbf{t}_B = 1.6 \, ps$$
$$\langle \Delta z \rangle = \mathbf{bg} c \, \mathbf{t}_B \approx 260 \, \mathbf{m} m$$

• By measuring Δz , we can follow time-dependent effects in B decays

e+e- storage ring at SLAC

- The e⁺e⁻ storage ring (PEP-II) at SLAC had to be updated to introduce the second ring, the low energy ring
 - The low energy ring was one of the most technically challenging storage rings ever created

- Electron ring finished in 1997
- Positron ring finished in 1998
- First collisions on July 23, 1998!

parameter	e+ ring	e-ring
energy (GeV)	3.1	9.0
total current (A)	2.14	0.9
top luminosity (cm ⁻² s ⁻¹)	4.51 x 10 ³³	

PEP-II: Spectacular Performance!

Luminosity is defined as

$$L = \frac{N_{e^+} \cdot N_{e^-} \cdot n_B \cdot f}{A}$$

where:

- N_{e} is the number of e^{-1} bunch
- N_{e+} is the number of e+/ bunch
- n_B is the number of bunches
- f is the overlap frequency
- A is the area of the beam

The recorded luminosity is a measure of how much data we get

The BaBar Detector

BaBar Silicon Vertex Tracker

Overview of B and D Decays and Oscillations

- In *B* decays, $b \rightarrow c$ transitions are dominant, but even they are suppressed by $|V_{cb}| \sim 0.04$
- Leptonic decay branching fractions are much lower for B, D than π , K because $\Gamma_{tot} \sim m_b^{-5}$
- Largest *B* branching fraction: $B(B \rightarrow D^* h) \sim 5\%$
- Hadronic decays: interference between internal and external W diagrams makes $\tau(D^+) >> \tau(D^0)$
- In hadronic B decays, the interference has opposite sign, but there is very little effect on the lifetimes: $\tau_{B+} \sim \tau_{B0}$.

Leptonic B decays

 Leptonic decays provide a clean way to probe the strong interactions that bind the quark-antiquark system in the initial state meson M

$$\frac{M}{\overline{q}} V_{\underline{Qq}} W^*$$

- Matrix element ~ (hadronic current x leptonic current), where hadronic current ~ decay constant
 - Decay const measures amplitude for Q and \overline{q} to have zero separation
- Measuring decay constants is interesting because they can be compared with increasingly precise QCD calculations, and because they are needed to extract certain CKM matrix elements.

Semileptonic B decays

- Semileptonic decays are much simpler than hadronic decays. Strong interaction effects are important, but
 - They are isolated to the hadronic current
 - Their effect can be rigorously parametrized by form factors (Lorentz-invariant functions of $q^2 = (q_B q_D)^2$)
- $b \rightarrow ch$ processes are dominant and are much easier to understand than $b \rightarrow uh$
 - Reliable theoretical normalization for b -> clv at zero recoil (Heavy-Quark Effective Theory)
 - Rates for b -> ulv are much harder to predict, event at small recoil of the daughter hadron, and they have a much larger range of hadronic recoil velocities

Rare hadronic B decays

- Branching fractions ~10⁻⁴-10⁻⁶
- Expectations:
 - $B \rightarrow \pi\pi$ dominated by $b \rightarrow u$ transition
 - $B \rightarrow K\pi$ dominated by gluonic penguin

Kaon-pion separation with the DIRC

- Measurement of the *Cherenkov angle* $\theta_c = \cos^{-1}(1/\beta n)$
- Kaon threshold ~500 MeV/c

Direct *CP* violation

• Conceptually, one of the simplest ways to study CP violation is to compare the decay rates $\Gamma(P \to \hbar)$ and $\Gamma(\bar{P} \to \bar{\hbar})$. Measure asymmetry:

$$A = \frac{\Gamma(P \to f) - \Gamma(\overline{P} \to \overline{f})}{\Gamma(P \to f) + \Gamma(\overline{P} \to \overline{f})}$$

- This type of CP violation can be observed only if there are both CP-violating and CP-conserving phases.
 - E.g., in $B \rightarrow K\pi$, there are tree and penguin contributions

Mode	Asymmetry ${\cal A}$
$\pi^+\pi^0$	$-0.02^{+0.27}_{-0.26} \pm 0.10$
$K^+\pi^0$	$0.00 \pm 0.11 \pm 0.02$
$\pi^+ K^0$	$-0.17 \pm 0.10 \pm 0.02$
$K^+\overline{K}{}^0$	_
$\pi^0\pi^0$	_

→ So far, no evidence for direct CP violation in these decays

Measuring $\sin 2\alpha$

• The decay $B^0 \to \pi^+\pi^-$ is also interesting because in principle it can be used for measuring $\sin 2\alpha$

$$\frac{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) - \Gamma(B_{phys}^{0}(t) \to f_{CP})}{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) + \Gamma(B_{phys}^{0}(t) \to f_{CP})} = S_{f_{CP}} \sin(\Delta m_d t) + C_{f_{CP}} \cos(\Delta m_d t)$$

$$S_{f_{CP}} = -\frac{2\overline{\operatorname{Im} \boldsymbol{l}}}{1 + \left|\boldsymbol{l}\right|^{2}} \quad C_{f_{CP}} = \frac{1 - \left|\boldsymbol{l}\right|^{2}}{1 + \left|\boldsymbol{l}\right|^{2}} \quad \boldsymbol{l} = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}}$$
CKM phase appears here

Why it's not quite $\sin 2\alpha$...

• Unlike J/y K_S , p + p – mode suffers from significant pollution from the penguin diagrams with a different weak phase

- To estimate $\boldsymbol{a}_{\text{eff}}$ \boldsymbol{a} , we need:
 - P/T ratio about 1/3 from $BR(B \to Kp)/BR(B \to pp)$
 - **d** = strong phase difference between *P* and *T*

Taming penguins

Take advantage of the isospin symmetry

$$A = \mathbf{a}_T \cdot T + \mathbf{a}_C \cdot C + \mathbf{a}_P \cdot P$$

Mode	α_{T}	$\alpha_{\rm C}$	α_{P}	BaBar <i>BR</i> ×10 ⁶	Belle BR×106
$B^0 \rightarrow p^+p^-$	$\sqrt{2}$	0	$\sqrt{2}$	$5.4 \pm 0.7 \pm 0.5$	$5.1\pm1.1\pm0.4$
$B^+ o p^+ p^0$	1	1	0	$4.1^{+1.1}_{-1.0} \pm 0.8$	$7.0 \pm 2.2 \pm 0.8$
$B^0 ightarrow p^0 p^0$	0	1	-1	< 3.3	< 5.6

All preliminary

Measuring γ with $B^- -> D^0K^-$

- Experimentally difficult:
 - Decay diagram suppressed by a factor 10 with respect to the favored B^{-} @ D^{0} p^{-} :
 - DIRC is very important for distinguishing between the two decay modes!
 - D⁰ CP decay modes are Cabibbo suppressed and have small branching fractions, so need a large data sample.

Rare radiative processes

- Rare B decays that can only proceed via loop diagrams in the Standard Model are sensitive to **new physics**
 - New, heavy, supersymmetric particles can appear in the loops!

$$Br(B \to Kl^+l^-) < 0.5 \times 10^{-6} (90\% \text{ C.L.})$$

 $Br(B \to K^*l^+l^-) < 2.9 \times 10^{-6} (90\% \text{ C.L.})$

$$-B \to K^* \gamma (\rho \gamma)$$

$$b \to \frac{s,d}{u,c,t} = \frac{s,d}{\frac{3-2001}{9591A1}}$$

$$-0.170 < A_{CP}(B \to K^* g) < 0.082 (90\% \text{ C.L.})$$

$$Br(B^0 \to r^0 g) < 1.5 \times 10^{-6} (90\% \text{ C.L.})$$

$$Br(B^+ \to r^+ g^-) < 2.8 \times 10^{-6} (90\% \text{ C.L.})$$

So far, no sign of new physics -- but need to keep looking with more data!

Mixing

• Mixing between a pseudoscalar meson P^0 and its antiparticle can be described in terms of an effective hamiltonian matrix:

$$\mathbf{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$

- Diagonalizing **H** gives mass eigenstates as linear combinations of P^0 and \overline{P}^0
- Γ_{12} describes $P^0 \rightarrow f \rightarrow P^0$ via **on-shell** intermediate states
- M_{12} describes $P^0 \rightarrow f \rightarrow P^0$ via **off-shell** intermediate states
- *CP* violation in mixing can arise from interference between on-shell and off-shell amplitudes
- In the B system, Γ_{12} is small; mixing is dominated by ΔM
 - In B_s system, Γ_{12} is large because both B_s and $\overline{B_s}$ can decay into Cabibbo-flavored states

CP Violation in Neutral B Decays

- B^0B^0 mixing is dominated by off-shell intermediate states; gives a single weak phase
- To measure CP asymmetry, need common final state. Measure

$$A_{f_{CP}}(t) = \frac{\Gamma(B^{0}(t) \to f) - \Gamma(\overline{B}^{0}(t) \to f)}{\Gamma(B^{0}(t) \to f) + \Gamma(\overline{B}^{0}(t) \to f)}$$

• Although *CP* asymmetries are large, useful modes (*e.g.*, $B^0 \rightarrow J/\psi K_s^0$) have relatively small branching fractions. Need very large data samples: 30 M to 50 M *BB* events or more. For $B^0 \rightarrow J/\psi K_s^0$

$$A_{f_{CP}}(t) = -\sin 2\,\boldsymbol{b}\,\sin(\Delta Mt)$$

Specifics for Y(4S)

- Due to correlated time evolution in Y(4S) $-> B^0 \overline{B}{}^0$, the asymmetry reverses sign when t_{CP} - t_{tag} reverses sign. This forces the time-integrated asymmetry to vanish. So we must measure time-dependent CPasymmetry => vertexing is critical!
- Tagging of initial state: use lepton and kaon from other B meson

$$b -> l, b -> c -> s$$

- Need excellent particle ID: e,μ, K, π, both for tagging and reconstruction of CP final state
- The mode $B^0 -> J/\psi K_s^0$ is a "golden mode" because of its theoretical simplicity and strong experimental signature.

One of BaBar's "Golden Events"

BaBar's Current Measurement of sin2\beta

 $\sin 2\beta = 0.75 \pm 0.09 \text{ (stat)} \pm 0.04 \text{ (sys)}$

The $\sin 2\beta$ measurement does not indicate new physics

Conclusions and Prospects

- Leptonic decays are barely seen (D_s only)
- We are just beginning to map out $b \rightarrow ulv$, to understand their dynamics, and to measure $|V_{ub}|$
- Hadronic rare decays are being explored. It's still possible to observe direct CP violation in such modes.
- Much remains to be learned about radiative penguin modes.
- Charm physics still has a lot to teach us. We need to continue focusing on $D^0\overline{D}{}^0$ mixing
- $\sin 2\beta$ measurements are becoming precise. No sign of new physics found yet.
- Will see much improved measurements of $\sin 2\alpha$ and $\sin 2\gamma$ in the next few years